第419章 格羅滕迪克晶狀上同調
在整個人類的文明曆史發展中,數學是被研究時間最長的學科。而其中關於整數和方程的性質,更是兩千多年來一直吸引無數智者的問題。而作為方程零點集的代數簇,通過研究它們的性質可以得出許多強大的定理。而上個世紀,在法國的天才數學及亞曆山大.格羅滕迪克的帶領下,人們提出了所謂的概型的概念,它是代數簇的概念的更加抽象和一般的推廣,建立在層的語言之上。自從有了概型的語言,整個代數幾何的麵貌煥然一新,在這中新的語言下,人們解決了許多重要的問題,比如困擾數學家們三百多年的費馬大定理,被懷爾斯證明,以及莫德爾猜想被德國數學家法爾廷斯證明,這些無不顯示了代數幾何的強大。我們知道同調群是一類重要的幾何不變量,其在代數拓撲中非常重要。同樣的在代數幾何中,研究層及概型的上同調也是非常的重要,在代數幾何中,上同調群也是非常的重要。我們知道有幾種定義上同調的方式,比如整體截麵函子的右導出函子,還有所謂的平展上同調,我們將在本文中介紹一種新的上同調,即所謂的晶體上同調。它在研究所的特征p的域k上的概型的吋候,特別有用。本文第一章主要介紹一些代數幾何的基礎知識,包括代數簇,層和概型的基本定義和性質以及層的上同調。第二章主要介紹除冪結構,晶體上同調的定義,以及如何用更加範疇語言來敘述晶體上同調。